Release of guanyl nucleotides from the regulatory subunit of adenylate cyclase.

نویسندگان

  • D L Burns
  • J Moss
  • M Vaughan
چکیده

Choleragen and beta-adrenergic agonists, both of which activate turkey erythrocyte adenylate cyclase, have been reported to accelerate release of bound [3H]guanyl nucleotides from turkey erythrocyte membranes. We have now obtained evidence that choleragen- or isoproterenol-stimulated release reflects a change in the affinity of the regulatory subunit (G/F) of adenylate cyclase for guanyl nucleotides. Solubilized preparations of turkey erythrocytes that had bound radiolabeled GTP were chromatographed on Ultrogel AcA 34. The protein from which guanyl nucleotide was released upon incubation with choleragen or isoproterenol was co-eluted with G/F activity. Furthermore, this protein appears to be the same size as the complex containing the 42,000-dalton peptide, ADP*-ribosylated by choleragen, which is presumably a subunit of G/F. ADP ribosylation of the 42,000-dalton subunit of G/F by choleragen occurred with a half-time of about 5 min, whereas choleragen-stimulated release of guanyl nucleotides was much slower (t1/2 greater than or equal to 60 min). When membranes were treated with choleragen and NAD, the delay in activation of adenylate cyclase by guanylyl imidodiphosphate was decreased but not abolished, a finding consistent with the idea that release of endogenously bound nucleotide (and subsequent binding of the nonhydrolyzable GTP analog) occurs only slowly following ADP ribosylation. In contrast, activation of the adenylate cyclase of either toxin-treated or untreated membranes in the presence of isoproterenol and guanylyl imidodiphosphate was very rapid. These data support the hypothesis that isoproterenol and choleragen may activate adenylate cyclase, at least in part, by increasing the rate of release of guanyl nucleotides from G/F.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calmodulin-sensitive and calmodulin-insensitive components of adenylate cyclase activity in rat striatum have differential responsiveness to guanyl nucleotides.

The interaction between the Ca2+-binding protein, calmodulin, and guanyl nucleotides was investigated in a rat striatal particulate fraction. We found that the ability of calmodulin to stimulate adenylate cyclase in the presence of guanyl nucleotides depends upon the type and concentration of the guanyl nucleotide. Adenylate cyclase activity measured in the presence of calmodulin and GTP reflec...

متن کامل

GTP is not required for calmodulin stimulation of bovine brain adenylate cyclase.

The importance of guanyl nucleotides for calmodulin stimulation of bovine cerebral cortex adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] was examined by using a partially purified calmodulin-sensitive adenylate cyclase that was resolved from calmodulin-insensitive forms of the enzyme. By using 5'-adenylyl imidodiphosphate as a substrate, in the absence of an ATP-regeneratin...

متن کامل

Loss of calcium/calmodulin responsiveness in adenylate cyclase of rutabaga, a Drosophila learning mutant.

We have isolated and mapped an X-linked recessive mutation in Drosophila that blocks associative learning, and have partially characterized it biochemically. The mutation affects adenylate cyclase activity. Cyclase activity from mutant flies differed from the wild-type enzyme in that it was not stimulated by calcium or calmodulin. Mutant cyclase activity did respond to guanyl nucleotides, fluor...

متن کامل

Intestinal brush border membranes contain regulatory subunits of adenylyl cyclase.

Cholera toxin alters intestinal function by stimulation of adenylyl cyclase [ATP pyrophosphate-lyase (cyclizing) or adenylate cyclase, EC 4.6.1.1]. The mechanism of this activation is unknown and particularly puzzling because adenylyl cyclase is confined to the basal lateral membrane of enterocytes, whereas it is the brush border membrane that binds the toxin and contains proteins that undergo ...

متن کامل

Progesterone inhibits adenylate cyclase in Xenopus oocytes. Action on the guanine nucleotide regulatory protein.

Previous studies have shown that ripe Xenopus 00cytes, 1.4 mm in diameter and suitable for microinjection, undergo meiotic cell division in response to progesterone by a mechanism involving a decrease in the level of CAMP. In order to investigate the mechanism by which the level of CAMP is reduced by progesterone treatment, adenylate cyclase activity was measured in manually dissected plasma me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 258 2  شماره 

صفحات  -

تاریخ انتشار 1983